An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality
Iosif Pinelis
Papers from arXiv.org
Abstract:
A certain spectrum, indexed by a\in[0,\infty], of upper bounds P_a(X;x) on the tail probability P(X\geq x), with P_0(X;x)=P(X\geq x) and P_\infty(X;x) being the best possible exponential upper bound on P(X\geq x), is shown to be stable and monotonic in a, x, and X, where x is a real number and X is a random variable. The bounds P_a(X;x) are optimal values in certain minimization problems. The corresponding spectrum, also indexed by a\in[0,\infty], of upper bounds Q_a(X;p) on the (1-p)-quantile of X is stable and monotonic in a, p, and X, with Q_0(X;p) equal the largest (1-p)-quantile of X. In certain sense, the quantile bounds Q_a(X;p) are usually close enough to the true quantiles Q_0(X;p). Moreover, Q_a(X;p) is subadditive in X if a\geq 1, as well as positive-homogeneous and translation-invariant, and thus is a so-called coherent measure of risk. A number of other useful properties of the bounds P_a(X;x) and Q_a(X;p) are established. In particular, quite similarly to the bounds P_a(X;x) on the tail probabilities, the quantile bounds Q_a(X;p) are the optimal values in certain minimization problems. This allows for a comparatively easy incorporation of the bounds P_a(X;x) and Q_a(X;p) into more specialized optimization problems. It is shown that the minimization problems for which P_a(X;x) and Q_a(X;p) are the optimal values are in a certain sense dual to each other; in the case a=\infty this corresponds to the bilinear Legendre--Fenchel duality. In finance, the (1-p)-quantile Q_0(X;p) is known as the value-at-risk (VaR), whereas the value of Q_1(X;p) is known as the conditional value-at-risk (CVaR) and also as the expected shortfall (ES), average value-at-risk (AVaR), and expected tail loss (ETL). It is shown that the quantile bounds Q_a(X;p) can be used as measures of economic inequality. The spectrum parameter, a, may be considered an index of sensitivity to risk/inequality.
Date: 2013-10
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Published in Risks, 2(3):349--392 (September 2014)
Downloads: (external link)
http://arxiv.org/pdf/1310.6025 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1310.6025
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().