A general Doob-Meyer-Mertens decomposition for $g$-supermartingale systems
Bruno Bouchard,
Dylan Possama\"i and
Xiaolu Tan
Papers from arXiv.org
Abstract:
We provide a general Doob-Meyer decomposition for $g$-supermartingale systems, which does not require any right-continuity on the system. In particular, it generalizes the Doob-Meyer decomposition of Mertens (1972) for classical supermartingales, as well as Peng's (1999) version for right-continuous $g$-supermartingales. As examples of application, we prove an optional decomposition theorem for $g$-supermartingale systems, and also obtain a general version of the well-known dual formation for BSDEs with constraint on the gains-process, using very simple arguments.
Date: 2015-05, Revised 2015-07
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1505.00597 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1505.00597
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().