Invariance times
St\'ephane Cr\'epey and
Shiqi Song
Additional contact information
St\'ephane Cr\'epey: LaMME
Shiqi Song: LaMME
Papers from arXiv.org
Abstract:
On a probability space $(\Omega,\mathcal{A},\mathbb{Q})$ we consider two filtrations $\mathbb{F}\subset \mathbb{G}$ and a $\mathbb{G}$ stopping time $\theta$ such that the $\mathbb{G}$ predictable processes coincide with $\mathbb{F}$ predictable processes on $(0,\theta]$. In this setup it is well-known that, for any $\mathbb{F}$ semimartingale $X$, the process $X^{\theta-}$ ($X$ stopped "right before $\theta$") is a $\mathbb{G}$ semimartingale.Given a positive constant $T$, we call $\theta$ an invariance time if there exists a probability measure $\mathbb{P}$ equivalent to $\mathbb{Q}$ on $\mathcal{F}\_T$ such that, for any $(\mathbb{F},\mathbb{P})$ local martingale $X$, $X^{\theta-}$ is a $(\mathbb{G},\mathbb{Q})$ local martingale. We characterize invariance times in terms of the $(\mathbb{F},\mathbb{Q})$ Az\'ema supermartingale of $\theta$ and we derive a mild and tractable invariance time sufficiency condition. We discuss invariance times in mathematical finance and BSDE applications.
Date: 2017-02
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1702.01045 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1702.01045
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().