Polynomial processes in stochastic portfolio theory
Christa Cuchiero
Papers from arXiv.org
Abstract:
We introduce polynomial processes in the sense of [8] in the context of stochastic portfolio theory to model simultaneously companies' market capitalizations and the corresponding market weights. These models substantially extend volatility stabilized market models considered by Robert Fernholz and Ioannis Karatzas in [18], in particular they allow for correlation between the individual stocks. At the same time they remain remarkably tractable which makes them applicable in practice, especially for estimation and calibration to high dimensional equity index data. In the diffusion case we characterize the joint polynomial property of the market capitalizations and the corresponding weights, exploiting the fact that the transformation between absolute and relative quantities perfectly fits the structural properties of polynomial processes. Explicit parameter conditions assuring the existence of a local martingale deflator and relative arbitrages with respect to the market portfolio are given and the connection to non-attainment of the boundary of the unit simplex is discussed. We also consider extensions to models with jumps and the computation of optimal relative arbitrage strategies.
Date: 2017-05
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1705.03647 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1705.03647
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().