EconPapers    
Economics at your fingertips  
 

Second order stochastic differential models for financial markets

Nguyen Tien Zung

Papers from arXiv.org

Abstract: Using agent-based modelling, empirical evidence and physical ideas, such as the energy function and the fact that the phase space must have twice the dimension of the configuration space, we argue that the stochastic differential equations which describe the motion of financial prices with respect to real world probability measures should be of second order (and non-Markovian), instead of first order models \`a la Bachelier--Samuelson. Our theoretical result in stochastic dynamical systems shows that one cannot correctly reduce second order models to first order models by simply forgetting about momenta. We propose some simple second order models, including a stochastic constrained n-oscillator, which can explain many market phenomena, such as boom-bust cycles, stochastic quasi-periodic behavior, and "hot money" going from one market sector to another.

Date: 2017-07
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1707.05419 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1707.05419

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1707.05419