An Option Pricing Model with Memory
Flavia Sancier and
Salah Mohammed
Papers from arXiv.org
Abstract:
We obtain option pricing formulas for stock price models in which the drift and volatility terms are functionals of a continuous history of the stock prices. That is, the stock dynamics follows a nonlinear stochastic functional differential equation. A model with full memory is obtained via approximation through a stock price model in which the continuous path dependence does not go up to the present: there is a memory gap. A strong solution is obtained by closing the gap. Fair option prices are obtained through an equivalent (local) martingale measure via Girsanov's Theorem and therefore are given in terms of a conditional expectation. The models maintain the completeness of the market and have no arbitrage opportunities.
Date: 2017-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1709.00468 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1709.00468
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().