EconPapers    
Economics at your fingertips  
 

Predictive Modeling: An Optimized and Dynamic Solution Framework for Systematic Value Investing

R. J. Sak

Papers from arXiv.org

Abstract: This paper defines systematic value investing as an empirical optimization problem. Predictive modeling is introduced as a systematic value investing methodology with dynamic and optimization features. A predictive modeling process is demonstrated using financial metrics from Gray & Carlisle and Buffett & Clark. A 31-year portfolio backtest (1985 - 2016) compares performance between predictive models and Gray & Carlisle's Quantitative Value strategy. A 26-year portfolio backtest (1990 - 2016) uses an expanded set of predictor variables to show financial performance improvements. This paper includes secondary novel contributions. Quantitative definitions are provided for Buffett & Clark's value investing metrics. The "Sak ratio" is proposed as an extension to the Benjamini-Hochberg procedure for the inferential identification of false positive observations.

Date: 2017-09
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1709.03226 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1709.03226

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1709.03226