EconPapers    
Economics at your fingertips  
 

Kelly Betting Can Be Too Conservative

Chung-Han Hsieh, B. Ross Barmish and John A. Gubner

Papers from arXiv.org

Abstract: Kelly betting is a prescription for optimal resource allocation among a set of gambles which are typically repeated in an independent and identically distributed manner. In this setting, there is a large body of literature which includes arguments that the theory often leads to bets which are "too aggressive" with respect to various risk metrics. To remedy this problem, many papers include prescriptions for scaling down the bet size. Such schemes are referred to as Fractional Kelly Betting. In this paper, we take the opposite tack. That is, we show that in many cases, the theoretical Kelly-based results may lead to bets which are "too conservative" rather than too aggressive. To make this argument, we consider a random vector X with its assumed probability distribution and draw m samples to obtain an empirically-derived counterpart Xhat. Subsequently, we derive and compare the resulting Kelly bets for both X and Xhat with consideration of sample size m as part of the analysis. This leads to identification of many cases which have the following salient feature: The resulting bet size using the true theoretical distribution for X is much smaller than that for Xhat. If instead the bet is based on empirical data, "golden" opportunities are identified which are essentially rejected when the purely theoretical model is used. To formalize these ideas, we provide a result which we call the Restricted Betting Theorem. An extreme case of the theorem is obtained when X has unbounded support. In this situation, using X, the Kelly theory can lead to no betting at all.

Date: 2017-10
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in Proceedings of the IEEE Conference on Decision and Control (CDC), pp .3695-3701, 2016

Downloads: (external link)
http://arxiv.org/pdf/1710.01786 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1710.01786

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1710.01786