Strong Convergence to the Mean-Field Limit of A Finite Agent Equilibrium
Masaaki Fujii and
Akihiko Takahashi
Papers from arXiv.org
Abstract:
We study an equilibrium-based continuous asset pricing problem for the securities market. In the previous work [16], we have shown that a certain price process, which is given by the solution to a forward backward stochastic differential equation of conditional McKean-Vlasov type, asymptotically clears the market in the large population limit. In the current work, under suitable conditions, we show the existence of a finite agent equilibrium and its strong convergence to the corresponding mean-field limit given in [16]. As an important byproduct, we get the direct estimate on the difference of the equilibrium price between the two markets; one consisting of heterogeneous agents of finite population size and the other of homogeneous agents of infinite population size.
Date: 2020-10, Revised 2021-12
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2010.09186 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2010.09186
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().