A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver
Akihiko Takahashi,
Yoshifumi Tsuchida and
Toshihiro Yamada
Papers from arXiv.org
Abstract:
This paper introduces a new approximation scheme for solving high-dimensional semilinear partial differential equations (PDEs) and backward stochastic differential equations (BSDEs). First, we decompose a target semilinear PDE (BSDE) into two parts, namely "dominant" linear and "small" nonlinear PDEs. Then, we employ a Deep BSDE solver with a new control variate method to solve those PDEs, where approximations based on an asymptotic expansion technique are effectively applied to the linear part and also used as control variates for the nonlinear part. Moreover, our theoretical result indicates that errors of the proposed method become much smaller than those of the original Deep BSDE solver. Finally, we show numerical experiments to demonstrate the validity of our method, which is consistent with the theoretical result in this paper.
Date: 2021-01, Revised 2021-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/2101.09890 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.09890
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().