EconPapers    
Economics at your fingertips  
 

Group Quantization of Quadratic Hamiltonians in Finance

Santiago Garcia

Papers from arXiv.org

Abstract: The Group Quantization formalism is a scheme for constructing a functional space that is an irreducible infinite dimensional representation of the Lie algebra belonging to a dynamical symmetry group. We apply this formalism to the construction of functional space and operators for quadratic potentials -- gaussian pricing kernels in finance. We describe the Black-Scholes theory, the Ho-Lee interest rate model and the Euclidean repulsive and attractive oscillators. The symmetry group used in this work has the structure of a principal bundle with base (dynamical) group a semi-direct extension of the Heisenberg-Weyl group by SL(2,R), and structure group (fiber) the positive real line.

Date: 2021-02, Revised 2021-02
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2102.05338 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.05338

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2102.05338