Linear-quadratic stochastic delayed control and deep learning resolution
William Lefebvre and
Enzo Miller
Additional contact information
William Lefebvre: LPSM
Enzo Miller: LPSM
Papers from arXiv.org
Abstract:
We consider a class of stochastic control problems with a delayed control, both in drift and diffusion, of the type dX t = $\alpha$ t--d (bdt + $\sigma$dW t). We provide a new characterization of the solution in terms of a set of Riccati partial differential equations. Existence and uniqueness are obtained under a sufficient condition expressed directly as a relation between the horizon T and the quantity d(b/$\sigma$) 2. Furthermore, a deep learning scheme is designed and used to illustrate the effect of delay on the Markowitz portfolio allocation problem with execution delay.
Date: 2021-02, Revised 2021-02
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2102.09851 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.09851
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().