Improved bounds for Square-Root Lasso and Square-Root Slope
Alexis Derumigny ()
Additional contact information
Alexis Derumigny: CREST; ENSAE
No 2017-53, Working Papers from Center for Research in Economics and Statistics
Abstract:
Extending the results of Bellec, Lecué and Tsybakov [1] to the setting of sparse highdimensional linear regression with unknown variance, we show that two estimators, the Square-Root Lasso and the Square-Root Slope can achieve the optimal minimax prediction rate, which is (s/n) log (p/s), up to some constant, under some mild conditions on the design matrix. Here, n is the sample size, p is the dimension and s is the sparsity parameter. We also prove optimality for the estimation error in the lq-norm, with q in [1, 2] for the Square-Root Lasso, and in the l2 and sorted l1 norms for the Square-Root Slope. Both estimators are adaptive to the unknown variance of the noise. The Square-Root Slope is also adaptive to the sparsity s of the true parameter. Next, we prove that any estimator depending on s which attains the minimax rate admits an adaptive to s version still attaining the same rate. We apply this result to the Square-root Lasso. Moreover, for both estimators, we obtain valid rates for a wide range of confidence levels, and improved concentration properties as in [1] where the case of known variance is treated. Our results are non-asymptotic. ;Classification-JEL: Primary 62G08; secondary 62C20, 62G05.
Keywords: Sparse linear regression; Minimax rates; High-dimensional statistics; Adaptivity; Square-root Estimators. (search for similar items in EconPapers)
Pages: 22 pages
Date: 2017-12-11
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://crest.science/RePEc/wpstorage/2017-53.pdf CREST working paper version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:crs:wpaper:2017-53
Access Statistics for this paper
More papers in Working Papers from Center for Research in Economics and Statistics Contact information at EDIRC.
Bibliographic data for series maintained by Secretariat General () and Murielle Jules Maintainer-Email : murielle.jules@ensae.Fr.