Properties of the American price function in the Heston-type models
Damien Lamberton () and
Giulia Terenzi
Additional contact information
Damien Lamberton: LAMA - Laboratoire d'Analyse et de Mathématiques Appliquées - UPEM - Université Paris-Est Marne-la-Vallée - BEZOUT - Fédération de Recherche Bézout - CNRS - Centre National de la Recherche Scientifique - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12 - CNRS - Centre National de la Recherche Scientifique, MATHRISK - Mathematical Risk Handling - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École nationale des ponts et chaussées - Centre Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique
Giulia Terenzi: LAMA - Laboratoire d'Analyse et de Mathématiques Appliquées - UPEM - Université Paris-Est Marne-la-Vallée - BEZOUT - Fédération de Recherche Bézout - CNRS - Centre National de la Recherche Scientifique - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12 - CNRS - Centre National de la Recherche Scientifique, Università degli Studi di Roma Tor Vergata [Roma, Italia] = University of Rome Tor Vergata [Rome, Italy] = Université de Rome Tor Vergata [Rome, Italie], MATHRISK - Mathematical Risk Handling - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École nationale des ponts et chaussées - Centre Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique
Working Papers from HAL
Abstract:
We study some properties of the American option price in the stochastic volatility Heston model. We first prove that, if the payoff function is convex and satisfies some regularity assumptions, then the option value function is increasing with respect to the volatility variable. Then, we focus on the standard put option and we extend to the Heston model some well known results in the Black and Scholes world, most by using probabilistic techniques. In particular, we study the exercise boundary, we prove the strict convexity of the value function in the continuation region, we extend to this model the early exercise premium formula and we prove a weak form of the smooth fit property.
Keywords: American options; Optimal stopping problem; Stochastic volatility (search for similar items in EconPapers)
Date: 2019-04-02
Note: View the original document on HAL open archive server: https://hal.science/hal-02088487v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://hal.science/hal-02088487v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-02088487
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().