Monotonicity condition for the $\theta$-scheme for diffusion equations
J. Frederic Bonnans () and
Xiaolu Tan
Additional contact information
J. Frederic Bonnans: Commands - Control, Optimization, Models, Methods and Applications for Nonlinear Dynamical Systems - CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique - Centre Inria de Saclay - Inria - Institut National de Recherche en Informatique et en Automatique, CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Xiaolu Tan: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
We derive the necessary and sufficient condition for the $L^{\infty}-$monotonicity of finite difference $\theta$-scheme for a diffusion equation. We confirm that the discretization ratio $\Delta t = O(\Delta x^2)$ is necessary for the monotonicity except for the implicit scheme. In case of the heat equation, we get an explicit formula, which is weaker than the classical CFL condition.
Date: 2011-10-21
Note: View the original document on HAL open archive server: https://inria.hal.science/inria-00634417v1
References: Add references at CitEc
Citations:
Published in [Research Report] RR-7778, INRIA. 2011, pp.6
Downloads: (external link)
https://inria.hal.science/inria-00634417v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:inria-00634417
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().