EconPapers    
Economics at your fingertips  
 

Monotonicity condition for the $\theta$-scheme for diffusion equations

J. Frederic Bonnans () and Xiaolu Tan
Additional contact information
J. Frederic Bonnans: Commands - Control, Optimization, Models, Methods and Applications for Nonlinear Dynamical Systems - CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique - Centre Inria de Saclay - Inria - Institut National de Recherche en Informatique et en Automatique, CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Xiaolu Tan: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique

Working Papers from HAL

Abstract: We derive the necessary and sufficient condition for the $L^{\infty}-$monotonicity of finite difference $\theta$-scheme for a diffusion equation. We confirm that the discretization ratio $\Delta t = O(\Delta x^2)$ is necessary for the monotonicity except for the implicit scheme. In case of the heat equation, we get an explicit formula, which is weaker than the classical CFL condition.

Date: 2011-10-21
Note: View the original document on HAL open archive server: https://inria.hal.science/inria-00634417v1
References: Add references at CitEc
Citations:

Published in [Research Report] RR-7778, INRIA. 2011, pp.6

Downloads: (external link)
https://inria.hal.science/inria-00634417v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:inria-00634417

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:wpaper:inria-00634417