EconPapers    
Economics at your fingertips  
 

Linearisierungsverfahren für Standortplanungsprobleme mit nichtlinearen Transportkosten

Raik Stolletz and Lars Stolletz

Hannover Economic Papers (HEP) from Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät

Abstract: This paper analyzes the Steiner-Weber-Problem with piecewise linear or piecewise constant transportation costs. These non-differentiable cost functions are analyzed using different one-step and dynamic linearization methods, which are based on approximations via average and marginal costs. An extensive numerical study compares these approaches with solutions based on linear and geometric regressions of the cost functions. In the numerical examples the dynamic linearization approaches give results near the optimal solutions. The relative deviations of the transportation costs of the approximated solutions to the minimal costs depend on the initialization of the dynamic approaches and improve as the number of demand points increases.

Keywords: Steiner-Weber-Problem; Standortplanung in der Ebene; stückweise lineare Transportkosten; Linearisierung; Dynamic Slope Scaling. (search for similar items in EconPapers)
JEL-codes: C61 (search for similar items in EconPapers)
Pages: 20 pages
Date: 2008-02
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://diskussionspapiere.wiwi.uni-hannover.de/pdf_bib/dp-388.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:han:dpaper:dp-388

Access Statistics for this paper

More papers in Hannover Economic Papers (HEP) from Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät Contact information at EDIRC.
Bibliographic data for series maintained by Heidrich, Christian ().

 
Page updated 2025-04-16
Handle: RePEc:han:dpaper:dp-388