EconPapers    
Economics at your fingertips  
 

Detrending Persistent Predictors

Christophe Boucher () and Bertrand Maillet

Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne

Abstract: Researchers in finance very often rely on highly persistent Ñ nearly integrated Ñ explanatory variables to predict returns. This paper proposes to stand up to the usual problem of persistent regressor bias, by detrending the highly auto-correlated predictors. We find that the statistical evidence of out-of-sample predictability of stock returns is stronger, once predictors are adjusted for high persistence

Keywords: Forecasting; persistence; detrending; expected returns (search for similar items in EconPapers)
JEL-codes: C1 C14 G1 (search for similar items in EconPapers)
Date: 2011-03
References: View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
ftp://mse.univ-paris1.fr/pub/mse/CES2011/11019.pdf (application/pdf)

Related works:
Working Paper: Detrending Persistent Predictors (2011) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: http://EconPapers.repec.org/RePEc:mse:cesdoc:11019

Access Statistics for this paper

More papers in Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne Contact information at EDIRC.
Series data maintained by Lucie Label ().

 
Page updated 2017-09-22
Handle: RePEc:mse:cesdoc:11019