Forecasting Realized Volatility of Russian stocks using Google Trends and Implied Volatility
T. Bazhenov and
Dean Fantazzini
Russian Journal of Industrial Economics, 2019, vol. 12, issue 1
Abstract:
This work proposes to forecast the Realized Volatility (RV) and the Value-at-Risk (VaR) of the most liquid Russian stocks using GARCH, ARFIMA and HAR models, including both the implied volatility computed from options prices and Google Trends data. The in-sample analysis showed that only the implied volatility had a significant effect on the realized volatility across most stocks and estimated models, whereas Google Trends did not have any significant effect. The outof-sample analysis highlighted that models including the implied volatility improved their forecasting performances, whereas models including internet search activity worsened their performances in several cases. Moreover, simple HAR and ARFIMA models without additional regressors often reported the best forecasts for the daily realized volatility and for the daily Value-at-Risk at the 1 % probability level, thus showing that efficiency gains more than compensate any possible model misspecifications and parameters biases. Our empirical evidence shows that, in the case of Russian stocks, Google Trends does not capture any additional information already included in the implied volatility.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://ecoprom.misis.ru/jour/article/viewFile/724/644 (application/pdf)
Related works:
Working Paper: Forecasting Realized Volatility of Russian stocks using Google Trends and Implied Volatility (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ach:journl:y:2019:id:724
DOI: 10.17073/2072-1633-2019-1-79-88
Access Statistics for this article
More articles in Russian Journal of Industrial Economics from MISIS
Bibliographic data for series maintained by Главный контакт редакции ().