Robust Tests for Heteroscedasticity in a general Framework
Marie Lebreton and
Anne Peguin-Feissolle
Annals of Economics and Statistics, 2007, issue 85, 159-187
Abstract:
In this paper, we suggest two heteroscedasticity tests that require little knowledge of the functional relationship determining the variance. The first one is based on a Taylor series expansion of the unknown scedastic function and the second one is based on artificial neural networks. These tests are easy to apply and perform well in our small sample simulations, but they possess asymptotically incorrect sizes except in the case of normal errors. Therefore, we propose a simple modification in order to correct this non-robustness property. We investigate the size and the power of these tests by Monte Carlo experiments by comparing them to well-known heteroscedasticity tests.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.jstor.org/stable/20079184 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:adr:anecst:y:2007:i:85:p:159-187
Access Statistics for this article
Annals of Economics and Statistics is currently edited by Laurent Linnemer
More articles in Annals of Economics and Statistics from GENES Contact information at EDIRC.
Bibliographic data for series maintained by Secretariat General () and Laurent Linnemer ().