Pricing and Competition with 100% Variable Renewable Energy and Storage
Tommi Ekholm and Vilma Virasjoki
The Energy Journal, 2020, vol. Volume 41, issue Special Issue
Abstract:
Electricity production is a key sector in global decarbonization efforts, and variable renewable energy (VRE) technologies are a primary way to produce carbon-free electricity. We study an electricity market where generation is 100 % VRE, while storage and elastic demand resolve temporal supply-demand imbalances. We model hourly market equilibrium to analyze price formation and imperfect, Cournot-type competition with varying levels of ownership concentration. Market power is exerted either with storage-only or with both VRE and storage. In such a system, prices are determined dynamically by demand and intertemporal storage decisions, breaking the static logic of "merit order" with dispatchable generation. The numerical results indicate that market power with storage has a relatively moderate effect on prices and market efficiency. However, market power exerted with VRE has far larger welfare impacts, resulting from curtailed generation. However, such actions could be more readily observed by a regulator via monitoring.
JEL-codes: F0 (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.iaee.org/en/publications/ejarticle.aspx?id=3684 (text/html)
Access to full text is restricted to IAEE members and subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:aen:journl:ej41-si1-ekholm
Ordering information: This journal article can be ordered from
http://www.iaee.org/en/publications/ejsearch.aspx
Access Statistics for this article
More articles in The Energy Journal from International Association for Energy Economics Contact information at EDIRC.
Bibliographic data for series maintained by David Williams ().