EconPapers    
Economics at your fingertips  
 

Logistics distribution model and storage planning design based on multi-source information positioning in smart city development

Juanjuan Ren () and Siti Salwa Salleh ()

Edelweiss Applied Science and Technology, 2024, vol. 8, issue 4, 1617-1629

Abstract: The research mainly focuses on the inefficient planning of autonomous distribution and storage modes of distribution vehicles in smart city logistics and distribution, which in turn leads to poor customer experience, rising distribution costs, and wasted distribution resources. From the perspective of information processing in the logistics distribution process, the study takes multi-angle and multi-source information collection and fusion processing strategy as the main basis to help smart delivery robots realize map construction and autonomous positioning in the distribution process, and then facilitate real-time logistics distribution and storage mode planning by robots in combination with their own states. The research results show that the algorithm accuracy, standard error, and average running time of the extended Kalman filter localization model designed in the study are 0.96, 1.52, and 105s, respectively, with the algorithm accuracy being the highest and the other two values being the lowest in its class. Meanwhile, in the simulation logistics planning, the research-designed logistics planning model has the strongest information capturing ability, and the planning of distribution routes and storage modes is more reasonable, which can provide more efficient autonomous planning solutions.

Keywords: Distribution model; Logistics; Multi-source information positioning; Smart city; Warehousing. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://learning-gate.com/index.php/2576-8484/article/view/1532/491 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ajp:edwast:v:8:y:2024:i:4:p:1617-1629:id:1532

Access Statistics for this article

More articles in Edelweiss Applied Science and Technology from Learning Gate
Bibliographic data for series maintained by Melissa Fernandes ().

 
Page updated 2025-03-19
Handle: RePEc:ajp:edwast:v:8:y:2024:i:4:p:1617-1629:id:1532