Modelización y predicción de series de tiempo financieras utilizando redes neuronales
Hugo Roberto Balacco and
Gustavo Germán Maradona
Additional contact information
Hugo Roberto Balacco: Facultad de Ciencias Económicas, Universidad Nacional de Cuyo
Gustavo Germán Maradona: Facultad de Ciencias Económicas, Universidad Nacional de Cuyo
Económica, 2011, vol. LVII, 3-23
Abstract:
The purpose of this work is to model and predict Financials Time Series by using neural networks. In order to achieve this aim, a recurrent total neural network with two hidden layers has been chosen; one layer for the linear threshold function and the other for the arctangent function. The series used in this research paper are the MERVAL index (Argentina) and the DOW JONES (USA). These results are based on information obtained over a period that goes from 1995 to 2006. The presentation will deal with the comparison of alternative techniques and the results obtained by other research workers.
Keywords: Neural Network; Forecast; Architecture Types; Transfer Functions; Mean Absolute Error. (search for similar items in EconPapers)
JEL-codes: C40 (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
https://revistas.unlp.edu.ar/Economica/article/view/5361/4393 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:akh:journl:575
Access Statistics for this article
More articles in Económica from Instituto de Investigaciones Económicas, Facultad de Ciencias Económicas, Universidad Nacional de La Plata Contact information at EDIRC.
Bibliographic data for series maintained by Laura Carella ().