Benford's Law and Beyond: A framework for auditors
Long Le () and
Eric Mantelaers ()
Additional contact information
Long Le: RSM NL, Hoofddorp, Netherlands
Eric Mantelaers: RSM Netherlands Accountants N.V., Netherlands
Maandblad Voor Accountancy en Bedrijfseconomie Articles, 2024, vol. 98, issue 7, 427-438
Abstract:
We propose a systematic framework that integrates Benford's Law – a mathematical principle predicting the frequency distribution of leading digits – with advanced statistical and machine learning techniques for enhanced anomaly detection in financial auditing, especially highlighting actionable next steps for implementation. This framework combines Benford's Law with K-means clustering and multi-digit analysis (First-two and First-three digits) to effectively distinguish between errors, benign anomalies, and fraudulent activities. Empirical validation on financial transaction data demonstrates significant improvements in fraud detection accuracy and reliability, offering practical insights and guidance for auditors on adopting a more robust approach to anomaly detection in modern auditing practices.
Keywords: Benford's; Law; Fraud; Detection; K-Mean; Clustering; Multiple; Digits; Analyses; Financial; Auditing (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://mab-online.nl/article/134061/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arh:jmabec:v:98:y:2024:i:7:p:427-438
DOI: 10.5117/mab.98.134061
Access Statistics for this article
Maandblad Voor Accountancy en Bedrijfseconomie Articles is currently edited by Chris D. Knoops
More articles in Maandblad Voor Accountancy en Bedrijfseconomie Articles from Maandblad Voor Accountancy en Bedrijfseconomie
Bibliographic data for series maintained by Teodor Georgiev ().