Isolation Purification and Partial Characterization of Antisnake Venom Plant Peptide (BRS-P19) from Bauhinia rufescens (LAM FAM) Seed as Potential Alternative to Serum-Based Antivenin
I. Sani*,
A.A. Umar,
S.A. Jiga,
F. Bello,
Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, Nigeria and
Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, Nigeria
Additional contact information
I. Sani*: Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, Nigeria
A.A. Umar: Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, Nigeria
S.A. Jiga: Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, Nigeria
F. Bello: A. Abdulhamid
Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, Nigeria: I.M. Fakai
Journal of Biotechnology Research, 2020, vol. 6, issue 4, 18-26
Abstract:
Several studies have been reported on active peptides isolated from some medicinal plants, which were effective inhibitors against snake venom induced toxicities. Hence, the aim of this research work was to isolate, purify and characterize an antisnake venom plant peptide from Bauhinia rufescens seed that can serve as potential alternative to serum-based antivenins. B. rufescens seed was collected, duly identified, authenticated and processed. The peptide was isolated from the seed and purified using gel filtration chromatography and SDS-PAGE and then named as BRS-P19. Venom Phospholipase A2 (VPLA2) was used for the study and was isolated from Naja nigricollis venom. Albino mice of both sexes were used for in vivo experiments. They were divided into seven (7) groups of three (3) mice each. Group 1 served as normal control, group 2 were injected with VPLA2 only, group 3 and 4 were injected with VPLA2 then treated with BRS-P19 at doses of 0.2 and 0.4 mg/kg b.w. respectively, while mice in group 5 were injected with VPLA2 then treated with standard antivenin, group 6 and 7 were injected with VPLA2 followed by administration of ascorbic acid and ?-tocopherol respectively. In all the groups, hepatic and renal levels of reactive oxygen species (ROS), lipid peroxidation (MDA) and activities of antioxidant enzymes were determined. The results showed that, the BRS-P19 has molecular weight of ~19kD. Its percentage in vitro inhibitory effect against VPLA2 was 91.85 ± 0.32%. For the in vivo study, the animals treated with 0.4 mg/kg b.w. of the BRS-P19 showed a significant (P
Keywords: Plant peptide; Venom phospholipase A2; Bauhinia rufescens; BRS-P19; Antioxidant (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.arpgweb.com/pdf-files/jbr6(4)18-26.pdf (application/pdf)
https://www.arpgweb.com/journal/16/archive/04-2020/4/6 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arp:rjbarp:2020:p:18-26
DOI: 10.32861/jbr.64.18.26
Access Statistics for this article
Journal of Biotechnology Research is currently edited by Dr. Ashraf Abd El-Halim El-Sayed
More articles in Journal of Biotechnology Research from Academic Research Publishing Group Rahim Yar Khan 64200, Punjab, Pakistan.
Bibliographic data for series maintained by Managing Editor ().