ARIMA Processes with ARIMA Parameters
Carlo Grillenzoni
Journal of Business & Economic Statistics, 1993, vol. 11, issue 2, 235-50
Abstract:
This article introduces a general class of nonlinear and nonstationary time-series models whose basic scheme is an autoregressive integrated moving average (ARIMA). The main feature i s that the parameters are assumed to behave like a vector ARIMAx model in which the exogenous (x) component is represented by the regressors o f the observable process. For this class, a general algorithm of identification-estimation is outlined based on the sampling information alone. The initial estimation, in particular, consists o f an iterative procedure of nonlinear regressions on recursive paramet er estimates generated with the extended Kalman filter.
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (9)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:11:y:1993:i:2:p:235-50
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().