Finite-Sample Properties of the Maximum Likelihood Estimator in GARCH(1,1) and IGARCH(1,1) Models: A Monte Carlo Investigation
Robin L Lumsdaine
Journal of Business & Economic Statistics, 1995, vol. 13, issue 1, 1-10
Abstract:
This paper compares GARCH(1,1) and IGARCH(1,1) models via a Monte Carlo study of the finite sample properties of the maximum likelihood estimator and related test statistics. While the asymptotic distribution is well approximated by the estimated t statistics, other commonly used statistics do not behave as well. In addition, the estimators themselves are skewed in small samples. For the null hypothesis of IGARCH(1,1), Wald tests typically have the best size while the standard Lagrange multiplier statistic is badly oversized; versions that are robust to possible nonnormality of the data perform marginally better. An empirical example demonstrates these results.
Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (22)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:13:y:1995:i:1:p:1-10
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().