EconPapers    
Economics at your fingertips  
 

Out-of-Sample Forecast Performance as a Test for Nonlinearity in Time Series

Ted Jaditz and Chera L Sayers

Journal of Business & Economic Statistics, 1998, vol. 16, issue 1, 110-17

Abstract: This article uses a local-information, near-neighbor forecasting methodology as a prediction test for evidence of a noisy, chaotic data-generating process underlying the Divisia monetary-aggregate series. Using a nonparametric method known to perform well with low-dimensional chaotic processes infected by noise, accompanied by a robust test of forecast performance evaluation, the authors compare out-of-sample forecasting accuracy from the local-information method to forecasting accuracy from the best fitting global linear model. Their results fail to substantiate previous claims for determinism in the Divisia monetary-aggregate series because the degree of forecast improvement obtained by the local-information method is not consistent with the hypothesis of a low-dimensional attractor underlying the Divisia data.

Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (11)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:16:y:1998:i:1:p:110-17

Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano

More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:bes:jnlbes:v:16:y:1998:i:1:p:110-17