A Maximum Likelihood Approach for Non-Gaussian Stochastic Volatility Models
Moshe Friedman and
Lawrence Harris
Journal of Business & Economic Statistics, 1998, vol. 16, issue 3, 284-91
Abstract:
A maximum likelihood approach for the analysis of stochastic volatility models is developed. The method uses a recursive numerical integration procedure that directly calculates the marginal likelihood. Only conventional integration techniques are used, making this approach both flexible and simple. Experimentation shows that the method matches the performance of the best estimation tools currently in use. New stochastic volatility models are introduced and estimated. The model that best fits recent stock-index data is characterized by a highly non-Gaussian stochastic volatility innovation distribution. This model dominates a model that includes an autoregressive conditional heteroscedastic effect in the stochastic volatility process and a model that includes a stochastic volatility effect in the conditional mean.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (59)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:16:y:1998:i:3:p:284-91
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().