Bayesian Analysis of an Unobserved-Component Time Series Model of GDP with Markov-Switching and Time-Varying Growths
Rob Luginbuhl and
Aart de Vos
Journal of Business & Economic Statistics, 1999, vol. 17, issue 4, 456-65
Abstract:
We propose an unobserved-component time series model of gross domestic product that includes Markov switching as an unobserved component. In addition to a trend component, the model has two time-varying drift components. One drift represents the expected rate of growth during recession; the other drift represents the expected rate during expansion. Estimates indicate a substantial decline in the latter annual rate for the United States from 6.4% in 1950 to 3.6% by 1990. We have employed weak priors based on prewar data. The estimation makes use of the Gibbs sampler and the Metropolis algorithm.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (14)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:17:y:1999:i:4:p:456-65
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().