Conditional Heteroscedasticity in Qualitative Response Models of Time Series: A Gibbs-Sampling Approach to the Bank Prime Rate
Michael Dueker
Journal of Business & Economic Statistics, 1999, vol. 17, issue 4, 466-72
Abstract:
Previous time series applications of qualitative response models have ignored features of the data, such as conditional heteroscedasticity, that are routinely addressed in time series econometrics of financial data. This article addresses this issue by adding Markov-switching heteroscedasticity to a dynamic ordered probit model of discrete changes in the bank prime lending rate and estimating via the Gibbs sampler. The dynamic ordered probit model of Eichengreen, Watson, and Grossman allows for serial autocorrelation in probit analysis of a time series, and this article demonstrates the relative simplicity of estimating a dynamic ordered probit using the Gibbs sampler instead of the Eichengreen et al. maximum likelihood procedure. In addition, the extension to regime-switching parameters and conditional heteroscedasticity is easy to implement under Gibbs sampling. The article compares tests of goodness of fit between dynamic ordered probit models of the prime rate that have constant variance and conditional heteroscedasticity.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (44)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Working Paper: Conditional heteroskedasticity in qualitative response models of time series: a Gibbs sampling approach to the bank prime rate (1998) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:17:y:1999:i:4:p:466-72
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().