EconPapers    
Economics at your fingertips  
 

Semiparametric ARCH Models: An Estimating Function Approach

David X Li and H J Turtle

Journal of Business & Economic Statistics, 2000, vol. 18, issue 2, 174-86

Abstract: We introduce the method of estimating functions to study the class of autoregressive conditional heteroscedasticity (ARCH) models. We derive the optimal estimating functions by combining linear and quadratic estimating functions. The resultant estimators are more efficient than the quasi-maximum likelihood estimator. If the assumption of conditional normality is imposed, the estimator obtained by using the theory of estimating functions is identical to that obtained by using the maximum likelihood method in finite samples. The relative efficiencies of the estimating function (EF) approach in comparison with the quasi-maximum likelihood estimator are developed. We illustrate the EF approach using a univariate GARCH(1,1) model with conditional normal. Student-t, and gamma distributions. The efficiency benefits of the EF approach relative to the quasi-maximum likelihood approach are substantial for the gamma distribution with large skewness. Simulation analysis shows that the finite-sample properties of the estimators from the EF approach are attractive. EF estimators tend to display less bias and root mean squared error than the quasi-maximum likelihood estimator. The efficiency gains are substantial for highly nonnormal distributions. An example demonstrates that implementation of the method is straightforward.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (15)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:18:y:2000:i:2:p:174-86

Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano

More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:bes:jnlbes:v:18:y:2000:i:2:p:174-86