Bayesian Analysis of Dynamic Bivariate Mixture Models: Can They Explain the Behavior of Returns and Trading Volume?
Toshiaki Watanabe
Journal of Business & Economic Statistics, 2000, vol. 18, issue 2, 199-210
Abstract:
Bivariate mixture models attribute the well-known positive correlation between return volatility and trading volume in financial markets to stochastic changes in a single latent variable representing the number of information arrivals. In this article, dynamic bivariate mixture models that allow for autocorrelation in the latent variable are analyzed by a Bayesian method via Markov-chain Monte Carlo techniques. The results, based on daily data from the Nikkei 225 stock-index futures, reveal that the Tauchen and Pitts model, in which returns and volume follow a bivariate normal distribution conditional on the latent variable, cannot account for the persistence in squared returns. whereas the Andersen model, in which the conditional distribution of volume is Poisson, cannot account for the persistence in volume. It is also found that the Tauchen and Pitts model yields too narrow Bayesian confidence intervals of the out-of-sample squared returns.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (10)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:18:y:2000:i:2:p:199-210
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().