Bayesian Dynamic Factor Models and Portfolio Allocation
Omar Aguilar and
Mike West
Journal of Business & Economic Statistics, 2000, vol. 18, issue 3, 338-57
Abstract:
We discuss the development of dynamic factor models for multivariate financial time series, and the incorporation of stochastic volatility components for latent factor processes. Bayesian inference and computation is developed and explored in a study of the dynamic factor structure of daily spot exchange rates for a selection of international currencies. The models are direct generalizations of univariate stochastic volatility models and represent specific varieties of models recently discussed in the growing multivariate stochastic volatility literature. We discuss model fitting based on retrospective data and sequential analysis for forward filtering and short-term forecasting. Analyses are compared with results from the much simpler method of dynamic variance-matrix discounting that, for over a decade, has been a standard approach in applied financial econometrics. We study these models in analysis, forecasting, and sequential portfolio allocation for a selected set of international exchange-rate-return time series. Our goals are to understand a range of modeling questions arising in using these factor models and to explore empirical performance in portfolio construction relative to discount approaches. We report on our experiences and conclude with comments about the practical utility of structured factor models and on future potential model extensions.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (224)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:18:y:2000:i:3:p:338-57
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().