EconPapers    
Economics at your fingertips  
 

Forecasting the Penetration of a New Product--A Bayesian Approach

Scott E Pammer, Duncan K H Fong and Steven F Arnold

Journal of Business & Economic Statistics, 2000, vol. 18, issue 4, 428-35

Abstract: We adopt a Bayesian approach to forecast the penetration of a new product into a market. We incorporate prior information from an existing product and/or management judgments into the data analysis. The penetration curve is assumed to be a nondecreasing function of time and may be under shape constraints. Markov-chain Monte Carlo methods are proposed and used to compute the Bayesian forecasts. An example on forecasting the penetration of color television using the information from black-and-white television is provided. The models considered can also be used to address the general bioassay and reliability stress-testing problems.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (2)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:18:y:2000:i:4:p:428-35

Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano

More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:bes:jnlbes:v:18:y:2000:i:4:p:428-35