EconPapers    
Economics at your fingertips  
 

On the Normal Inverse Gaussian Stochastic Volatility Model

Jonas Andersson

Journal of Business & Economic Statistics, 2001, vol. 19, issue 1, 44-54

Abstract: In this article, the normal inverse Gaussian stochastic volatility model of Barndorf-Nielsen is extended. The resulting model has a more flexible lag structure than the original one. In addition, the second- and fourth-order moments, important properties of a volatility model, are derived. The model can be considered either as a generalized autoregressive conditional heteroscedasticity model with nonnormal errors or as a stochastic volatility model with an inverse Gaussian distributed conditional variance. A simulation study is made to investigate the performance of the maximum likelihood estimator of the model. Finally, the model is applied to stock returns and exchange-rate movements. Its fit to two stylized facts and its forecasting performance is compared with two other volatility models.

Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (36)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:19:y:2001:i:1:p:44-54

Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano

More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:bes:jnlbes:v:19:y:2001:i:1:p:44-54