EconPapers    
Economics at your fingertips  
 

On the Nonlinear Predictability of Stock Returns Using Financial and Economic Variables

Jeffrey Racine

Journal of Business & Economic Statistics, 2001, vol. 19, issue 3, 380-82

Abstract: In a recent article by Qi, neural networks trained by Bayesian regularization were used to predict excess returns on the S&P 500. The article concluded that the switching portfolio based on the recursive neural-network forecasts generates higher accumulated wealth with lower risks than that based on linear regression. Unfortunately, attempts to replicate the results were unsuccessful. Replicated results using the same software, approach and data detailed by Qi indicate that, in fact, the switching portfolio based on the recursive neural-network forecasts generates lower accumulated wealth with higher risks than that based on linear regression.

Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (21)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:19:y:2001:i:3:p:380-82

Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano

More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:bes:jnlbes:v:19:y:2001:i:3:p:380-82