EconPapers    
Economics at your fingertips  
 

Markov Chain Monte Carlo Analysis of Correlated Count Data

Siddhartha Chib and Rainer Winkelmann

Journal of Business & Economic Statistics, 2001, vol. 19, issue 4, 428-35

Abstract: This article is concerned with the analysis of correlated count data. A class of models is proposed in which the correlation among the counts is represented by correlated latent effects. Special cases of the model are discussed and a tuned and efficient Markov chain Monte Carlo algorithm is developed to estimate the model under both multivariate normal and multivariate-t assumptions on the latent effects. The methods are illustrated with two real data examples of six and sixteen variate correlated counts.

Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (71)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:19:y:2001:i:4:p:428-35

Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano

More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:bes:jnlbes:v:19:y:2001:i:4:p:428-35