Estimation for Autoregressive Time Series with a Root Near 1
Anindya Roy and
Wayne A Fuller
Journal of Business & Economic Statistics, 2001, vol. 19, issue 4, 482-93
Abstract:
Estimators for the parameters of autoregressive time series are compared, emphasizing processes with a unit root or a root close to 1. The approximate bias of the sum of the autoregressive coefficients is expressed as a function of the test for a unit root. This expression is used to construct an estimator that is nearly unbiased for the parameter of the first-order scalar process. The estimator for the first-order process has a mean squared error that is about 40% of that of ordinary least squares for the process with a unit root and a constant mean, and the mean squared error is smaller than that of ordinary least squares for about half of the parameter space. The maximum loss of efficiency is 6n[superscript -1] in the remainder of the parameter space. The estimation procedure is extended to higher-order processes by modifying the estimator of the sum of the autoregressive coefficients. Limiting results are derived for the autoregressive process with a mean that is a linear trend.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (45)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:19:y:2001:i:4:p:482-93
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().