EconPapers    
Economics at your fingertips  
 

Efficiency of Covariance Matrix Estimators for Maximum Likelihood Estimation

Jack Porter

Journal of Business & Economic Statistics, 2002, vol. 20, issue 3, 431-40

Abstract: When econometric models are estimated by maximum likelihood, the conditional information matrix variance estimator is usually avoided in choosing a method for estimating the variance of the parameter estimate. However, the conditional information matrix estimator attains the semiparametric efficiency bound for the variance estimation problem. Unfortunately, for even moderately complex models, the integral involved in computation of the conditional information matrix estimator is prohibitively difficult to solve. Simulation is suggested to approximate the integral, and two simulation variance estimators are proposed. Monte Carlo results suggest these estimators are attractive in providing accurate confidence interval coverage rates compared to the standard maximum likelihood variance estimators.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (4)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:20:y:2002:i:3:p:431-40

Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano

More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:bes:jnlbes:v:20:y:2002:i:3:p:431-40