Generalized Method of Moments and Empirical Likelihood
Guido Imbens
Journal of Business & Economic Statistics, 2002, vol. 20, issue 4, 493-506
Abstract:
Generalized method of moments (GMM) estimation has become an important unifying framework for inference in econometrics in the last 20 years. It can be thought of as encompassing almost all of the common estimation methods, such as maximum likelihood, ordinary least squares, instrumental variables, and two-stage least squares, and nowadays is an important part of all advanced econometrics textbooks. The GMM approach links nicely to economic theory where orthogonality conditions that can serve as such moment functions often arise from optimizing behavior of agents. Much work has been done on these methods since the seminal article by Hansen, and much remains in progress. This article discusses some of the developments since Hansen's original work. In particular, it focuses on some of the recent work on empirical likelihood-type estimators, which circumvent the need for a first step in which the optimal weight matrix is estimated and have attractive information theoretic interpretations.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (37)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:20:y:2002:i:4:p:493-506
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().