Was There a Riverside Miracle? A Hierarchical Framework for Evaluating Programs with Grouped Data
Rajeev Dehejia
Journal of Business & Economic Statistics, 2003, vol. 21, issue 1, 1-11
Abstract:
This article discusses the evaluation of programs implemented at multiple sites. Two frequently used methods are pooling the data or using fixed effects (an extreme version of which estimates separate models for each site). The former approach ignores site effects. The latter incorporates site effects but lacks a framework for predicting the impact of subsequent implementations of the program (e.g., would a new implementation resemble Riverside?). I present a hierarchical model that lies between these two extremes. Using data from the Greater Avenues for Independence demonstration, I demonstrate that the model captures much of the site-to-site variation of the treatment effects but has less uncertainty than estimating the treatment effect separately for each site. I also show that when predictive uncertainty is ignored, the treatment impact for the Riverside sites is significant, but when predictive uncertainty is considered, the impact for these sites is insignificant. Finally, I demonstrate that the model extrapolates site effects with reasonable accuracy when the site being predicted does not differ substantially from the sites already observed. For example, the San Diego treatment effects could have been predicted based on their site characteristics, but the Riverside effects are consistently underpredicted.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (27)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:21:y:2003:i:1:p:1-11
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().