Tests of Rank in Reduced Rank Regression Models
Camba-Mendez, Gonzalo, et al
Authors registered in the RePEc Author Service: Gonzalo Camba-Mendez
Journal of Business & Economic Statistics, 2003, vol. 21, issue 1, 145-55
Abstract:
There has recently been renewed research interest in the development of tests of the rank of a matrix. This article evaluates the performance of some asymptotic tests of rank determination in reduced rank regression models together with bootstrapped versions through simulation experiments. The bootstrapped procedures significantly improve on the performance of the corresponding asymptotic tests. The article also presents a Monte Carlo exercise comparing the forecasting performance of reduced rank and unrestricted vector autoregressive (VAR) models in which the former appear superior. The tests of rank considered here are then applied to construct reduced rank VAR models for leading indicators of U.K. economic activity. These more parsimonious multivariate representations display an improvement in forecasting performance over that of unrestricted VAR models.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (20)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:21:y:2003:i:1:p:145-55
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().