Robust Stationarity Tests in Seasonal Time Series Processes
Robert Taylor
Journal of Business & Economic Statistics, 2003, vol. 21, issue 1, 156-63
Abstract:
This article builds on the existing literature on (stationarity) tests of the null hypothesis of deterministic seasonality in a univariate time series process against the alternative of unit root behavior at some or all of the zero and seasonal frequencies. This article considers the case where, in testing for unit roots at some proper subset of the zero and seasonal frequencies, there are unattended unit roots among the remaining frequencies. Monte Carlo results are presented that demonstrate that in this case, the stationarity tests tend to distort below nominal size under the null and display an associated (often very large) loss of power under the alternative. A modification to the existing tests, based on data prefiltering, that eliminates the problem asymptotically is suggested. Monte Carlo evidence suggests that this procedure works well in practice, even at relatively small sample sizes. Applications of the robustified statistics to various seasonally unadjusted time series measures of U.K. consumers' expenditure are considered; these yield considerably more evidence of seasonal unit roots than do the existing stationarity tests.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (16)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:21:y:2003:i:1:p:156-63
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().