EconPapers    
Economics at your fingertips  
 

Seasonality Tests

Fabio Busetti and Andrew Harvey

Journal of Business & Economic Statistics, 2003, vol. 21, issue 3, 420-36

Abstract: This article modifies and extends the test against nonstationary stochastic seasonality proposed by Canova and Hansen. A simplified form of the test statistic in which the nonparametric correction for serial correlation is based on estimates of the spectrum at the seasonal frequencies is considered and shown to have the same asymptotic distribution as the original formulation. Under the null hypothesis, the distribution of the seasonality test statistics is not affected by the inclusion of trends, even when modified to allow for structural breaks, or by the inclusion of regressors with nonseasonal unit roots. A parametric version of the test is proposed, and its performance is compared with that of the nonparametric test using Monte Carlo experiments. A test that allows for breaks in the seasonal pattern is then derived. It is shown that its asymptotic distribution is independent of the break point, and its use is illustrated with a series on U.K. marriages. A general test against any form of permanent seasonality, deterministic or stochastic, is suggested and compared with a Wald test for the significance of fixed seasonal dummies. It is noted that tests constructed in a similar way can be used to detect trading-day effects. An appealing feature of the proposed test statistics is that under the null hypothesis, they all have asymptotic distributions belonging to the Cramer-von Mises family.

Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (21)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:21:y:2003:i:3:p:420-36

Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano

More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-31
Handle: RePEc:bes:jnlbes:v:21:y:2003:i:3:p:420-36