The Estimation of Dynamic Bivariate Mixture Models: Reply to Liesenfeld and Richard Comments
Toshiaki Watanabe
Journal of Business & Economic Statistics, 2003, vol. 21, issue 4, 577-80
Abstract:
Watanabe estimated the dynamic bivariate mixture models introduced by Tauchen and Pitts and modified by Andersen using a Bayesian method via Markov chain Monte Carlo techniques. Based on a maximum likelihood method via efficient importance sampling, Liesenfeld and Richard obtained estimates that are significantly different from those of Watanabe. This note corrects the error in the multimove sampler used by Watanabe and reproduces all analyses in the work of Watanabe using a corrected multimove sampler. The estimates using the correct multimove sampler are found to be close to those obtained by Liesenfeld and Richard.
Date: 2003
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:21:y:2003:i:4:p:577-80
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().