Count Models Based on Weibull Interarrival Times
Blake McShane,
Moshe Adrian,
Eric T Bradlow and
Peter S Fader
Journal of Business & Economic Statistics, 2008, vol. 26, 369-378
Abstract:
The widespread popularity and use of both the Poisson and the negative binomial models for count data arise, in part, from their derivation as the number of arrivals in a given time period assuming exponentially distributed interarrival times (without and with heterogeneity in the underlying base rates, respectively). However, with that clean theory come some limitations including limited flexibility in the assumed underlying arrival rate distribution and the inability to model underdispersed counts (variance less than the mean). Although extant research has addressed some of these issues, there still remain numerous valuable extensions. In this research, we present a model that, due to computational tractability, was previously thought to be infeasible. In particular, we introduce here a generalized model for count data based upon an assumed Weibull interarrival process that nests the Poisson and negative binomial models as special cases. The computational intractability is overcome by deriving the Weibull count model using a polynomial expansion which then allows for closed-form inference (integration term-by-term) when incorporating heterogeneity due to the conjugacy of the expansion and a commonly employed gamma distribution. In addition, we demonstrate that this new Weibull count model can (1) model both over- and underdispersed count data, (2) allow covariates to be introduced in a straightforward manner through the hazard function, and (3) be computed in standard software.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://pubs.amstat.org/doi/abs/10.1198/073500107000000278 full text (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:26:y:2008:p:369-378
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().