Statistical Inference with Generalized Gini Indices of Inequality, Poverty, and Welfare
Garry Barrett and
Stephen Donald
Journal of Business & Economic Statistics, 2009, vol. 27, 1-17
Abstract:
This article considers statistical inference for consistent estimators of generalized Gini indices of inequality, poverty, and welfare. Our method does not require grouping the population into a fixed number of quantiles. The empirical indices are shown to be asymptotically normally distributed using functional limit theory. Easily computed asymptotic variance expressions are obtained using influence functions. Inference based on first-order asymptotics is then compared with the grouped method and various bootstrap methods in simulations and with U.S. income data. The bootstrap-t method based on our asymptotic theory is found to have superior size and power properties in small samples.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://pubs.amstat.org/doi/abs/10.1198/jbes.2009.0001 full text (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:27:y:2009:p:1-17
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().