Tests for Serial Dependence and Other Specification Analysis in Models of Markets in Disequilibrium
Anil Bera () and
Peter Robinson
Journal of Business & Economic Statistics, 1989, vol. 7, issue 3, 343-52
Abstract:
The assumption of serial independence of disturbances is the starting point of most of the work done on analyzing market disequilibrium models. We derive tests for serial dependence given normality and homoscedasticity using the Lagrange multiplier (LM) test principle. Although the likelihood function under serial dependence is very complicated and involves multiple integrals of dimensions equal to the sample size, the test statistic we obtain through the LM principle is very simple. We apply the test to the housing-start data of Fair and Jaffee (1972) and study its finite sample properties through simulation. The test seems to perform quite well infinite sample in terms of size and power. We present an analysis of disequilibrium models that assumes that the disturbances are logistic rather than normal. The relative performances of these distributions are investigated by simulation.
Date: 1989
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:7:y:1989:i:3:p:343-52
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().