Influential Observations in Time Series
Daniel Peña
Journal of Business & Economic Statistics, 1990, vol. 8, issue 2, 235-41
Abstract:
This article studies how to identify influential observations in univariate autoregressive integrated moving average time series models and how to measure their effects on the estimated parameters of the model. The sensitivity of the parameters to the presence of either additive or innovational outliers is analyzed, and influence statistics based on the Mahalanobis distance are presented. The statistic linked to additive outliers is shown to be very useful for indicating the robustness of the fitted model to the given data set. Its application is illustrated using a relevant set of historical data.
Date: 1990
References: Add references at CitEc
Citations: View citations in EconPapers (31)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:8:y:1990:i:2:p:235-41
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().