Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models
Theo Nijman and
Franz Palm
Journal of Business & Economic Statistics, 1990, vol. 8, issue 4, 405-15
Abstract:
We compare the forecast accuracy of autoregressive integrated moving average (ARIMA) models based on data observed with high and low frequency, respectively. We discuss how, for instance, a quarterly model can be used or predict one quarter ahead even if only annual data are available, and we compare the variance of the prediction error in this case with the variance if quarterly observations were indeed available. Results on the expected information gain are presented for a number of ARIMA models including models that describe the seasonally adjusted gross national product (GNP) series in the Netherlands. Disaggregation from annual to quarterly GNP data has reduced the variance of short-run forecast errors considerably, but furter disaggregation from quarterly to monthly data is found to hardly improve the accuracy of monthly forecasts.
Date: 1990
References: Add references at CitEc
Citations: View citations in EconPapers (23)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bes:jnlbes:v:8:y:1990:i:4:p:405-15
Ordering information: This journal article can be ordered from
http://www.amstat.org/publications/index.html
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Jonathan H. Wright and Keisuke Hirano
More articles in Journal of Business & Economic Statistics from American Statistical Association
Bibliographic data for series maintained by Christopher F. Baum ().